Lecture 02 notes ME-390, Fall 2024 Prof. Maryam Kamgarpour

1 Supervised learning and linear regression background

e We define X € RV*(@+1) a5 o matrix whose rows are the data vectors: (1,28, 2%, ... ,xil) for
i =1,2,...,N. With this notation, an affine function f : R¥*! — R acting on each data
point gives rise to ¢ = w!z?, i = 1,...,N. If the §* € R are stacked together and written
as a vector § = (9%,9%,...,9"), we can then write § = Xw. Thus, if the true labels are
y € RN, verify that we can write the error vector in prediction using a linear model as a
vector e = (e',e?,...,eN) with el =" —y' as e = Xw — .

e In case each label y is vector-valued, i.e. y € R™, rather than real-valued, we would have a set
of m weights for each element of y, since we learn an affine functions for each element of y. We
use the notation wy, ; to refer to the j-th element of the k-th weight vector for j = 0,1,...,d
and k= 1,2,...,m. It follows that y} = w]a', for [ € {1,...,m} and i € {1,...,N}.

Our goal in supervised learning is to learn a function f : R? — R™, called a predictor, such
that for a given independent variable x we can predict the corresponding dependent variable y as
7 := f(x) = y. We often fix a model class (e.g. linear) and parameterize f with a set of parameters
w € RP (e.g. coefficients in the linear regression).

1.1 Loss or cost function

Given a pair (z,y), the error in our prediction depends on how close our prediction g is to the true
label y. Since § = f(z) and f is parameterized by w, the error becomes a function of w. Based
on the error, we define a loss function L : R? — R. We then aim to learn w so as to minimize the
loss L(w). Note: the loss function is also referred to as a cost function, and sometimes also as the
performance metric (though in some cases the performance metric might be different than the loss
function). Furthermore, this function is sometimes written as J(-) instead of L(-).

Gradient, Hessian, partial derivative

e The gradient of a function L : RP — R is denoted by VL(w) € RP. It is formed by stacking
oL

together the partial derivatives Ju t=1,2,...,p in a vector.

e For an affine function f : RP — R, represented as f(w) = a’w + b, with a € RP, b € R, verify
that the gradient is V f(w) = a. The gradient of several loss functions we have encountered
can be derived using this fact, the chain rule and the product rule from calculus.

e The problem of finding a minimum of a function L : R? — R is written as min,, L(w) and the
optimizer of the problem is denoted by w* = arg min L(w).

e Recall that if w* € RP is a minimum of a differentiable function L : R? — R, then VL(w*) = 0.
In other words, for an unconstrained optimization, the gradient of the function has to vanish
at an optimum.

Exercise 1. Go through the notes on computing gradient and Hessian of linear and quadratic
functions here.

e Derive the gradient and Hessian of the function f : RP — R, given by f(w) = w’a + b with
respect to w € RP b € R.


https://www.cs.ubc.ca/~schmidtm/Courses/Notes/linearQuadraticGradients.pdf
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Solution:

Vufw)= (85 - %)T:a

V2 f(w) = 0 € RP¥P.

e Derive the gradient and the Hessian of the function f : R? — R, given by f(w) = w’ Aw +
w?la + b, with respect to w € RP, b € R.

Solution:
Vuf(w) =(A+ AN w+a
Vo f(w) = (A+ AT)
Vif(w) =1
Vi f(w) =0

Exercise 2. Consider M € RP*P,

e Under which conditions is M invertible? Xou may state as many conditions as you know.
Solution:
— M7 is invertible
M has full rank
— M has a trivial kernel ker(M) = {0}
— The function f(z) = Az, = € RP is bijective

— The rows of M are linearly independent
— The columns of M are linearly independent
Det(M) #0

0 is not in the eigenvalues of M

— M is row-equivalent to the identity matrix
— M is column-equivalent to the identity matrix
— M has p pivot positions

— M can be expressed as a finite product of elementary matrices

The conditions can be found on

e Now, suppose M = XTX. Under which conditions on X € RN*P is M invertible? What
would this imply regarding your data matrix X7

Solution:
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— The following condition implies that M is invertible: The columns of X are linearly
independent and N > p. Equivalently, assuming X has p pivots implies that M is
invertible. (The interested reader can find a proof written by Yiorgos S. Smyrlis.)

— This means that all of our features are linearly independent. No feature can be expressed
as a linear combination of the other features. For example, if we do a linear regression
to predict the C'Oy emissions of a car, we should not have the weight of the car in tons
and in kilos otherwise the matrix will not be invertible.
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